Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jin-Ling Wang,* Feng Ding and Fang-Ming Miao

College of Chemical and Life Science, Tianjin Normal University, Tianjin 300074, People's
Republic of China

Correspondence e-mail:
wangjinling43@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
H -atom completeness 96%
R factor $=0.055$
$w R$ factor $=0.096$
Data-to-parameter ratio $=10.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis\{4-[a-(4-acetylphenylimino)benzyl]-3-methyl-1-phenylpyrazol-5-onato\}aquacopper(II)

The Cu atom in the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, has a distorted trigonal-bipyramidal coordination environment, with two O atoms of the pyrazolone rings and a water O atom in the equatorial plane and two N atoms in axial positions $\left[\mathrm{N}-\mathrm{Cu}-\mathrm{N}=159.34(16)^{\circ}\right]$. The complex occupies a special position on a twofold axis running through the Cu atom and the water O atom. The $\mathrm{Cu}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bond [2.549 (4) \AA] is substantially longer than the rest of the bonds in the coordination polyhedron $[\mathrm{Cu}-\mathrm{O}=1.919$ (2) \AA and $\mathrm{Cu}-\mathrm{N}=1.990$ (3) $\AA]$. The pyrazolone ring is almost coplanar with the adjacent chelate ring, the dihedral angle formed by the mean plane of the pyrazolone ring and the planar part of the chelate ring being $2.91(3)^{\circ}$.

Comment

Schiff base compounds are relatively easy to obtain and they frequently show high biological activity. Therefore, studies of Schiff bases and their metal complexes are the focal point of many research groups working in the fields of coordination chemistry, biomedicine and pharmaceutical chemistry (Vigoto, 1987).

(I)

4-Acyl-5-pyrazolones are enolizable β-diketones which afford stable chelate complexes with several metals (Miyazaki et al., 1989; Morales et al., 1988). A number of compounds derived from 4-acyl-5-pyrazolones and aromatic amines have been synthesized (Wang, Yu, Xu \& Miao, 2002; Wang, Yu, Yang \& Miao, 2002; Yu et al., 2002). The ligand prepared by condensation of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) with p-aminoacetophenone was used for the synthesis of the title copper complex, (I), the structure of which is reported here.

The molecule has crystallographic twofold rotation symmetry, the axis passing through Cu 1 and the coordinated water molecule. Atom Cu 1 has a distorted trigonal-bipyramidal environment, with atoms N3 and N3 ${ }^{\mathrm{i}}$ [symmetry code:

Received 18 November 2002
Accepted 28 January 2003
Online 28 February 2003

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids.
(i) $\left.-x, y, \frac{3}{2}-z\right]$ in axial positions $\left[\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 3^{\mathrm{i}}=\right.$ $159.34(16)^{\circ}$] and both pyrazolone and water O atoms (O1, $\mathrm{O} 1^{\mathrm{i}}$ and O3) in the equatorial plane (Fig. 1). The $\mathrm{Cu} 1-\mathrm{O} 3$ bond $[2.549$ (4) \AA] is substantially longer than other bonds in the coordination sphere of the Cu 1 atom $[\mathrm{Cu} 1-\mathrm{O} 1=$ 1.919 (2) \AA and $\mathrm{Cu} 1-\mathrm{N} 3=1.990$ (3) \AA], which would be typical for square-planar Cu^{2+} complexes with additional coordination $[4+1]$. However, the description of the coordination as square-pyramidal, though in some sense logical, would be geometrically inaccurate, as the $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ fragment shows a pronounced tetrahedral distortion $\left[\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}=\right.$ $\left.144.56(14)^{\circ}\right]$. A pentacoordinated copper complex similar to (I) was recently reported for the thiosemicarbazide derivative, aqua(3-hydroxy-5-hydroxymethyl-2-methyl-pyridine-4-carboxaldehyde 3-methylisothiosemicarbazone)(nitrato)copper(II) nitrate (Leovac et al., 2002).

The earlier studied PMBP complexes, however, had metal centers with higher coordination numbers [e.g. (PMBP) $)_{2} \operatorname{Sn}(t-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$ (Pettinari et al., 1991) and (PMBP) $)_{2} \mathrm{SnMe}_{2}$ (Bovio et al., 1993)].

The chelate ring $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{N} 3$ has a sofa conformation with Cu 1 displaced by 0.617 (4) \AA from the mean $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 5 / \mathrm{N} 3$ plane [maximum deviation of 0.042 (2) \AA for atom C5]. The latter plane is almost coplanar with the mean pyrazolone ring plane; the dihedral angle formed by these planes [2.91 (3) ${ }^{\circ}$] is close to analogous dihedral angles in the Co (PMBP- m-chloroaniline) complex [2.47 (5) and $1.69(6)^{\circ}$; Wang et al., 2003]. Owing to steric hindrance, the chelate ring plane is nearly orthogonal to the rings planes C21-C26 and C31-C36 [respective dihedral angles are 84.39 (10) and $\left.77.29(9)^{\circ}\right]$.

Though it was impossible to locate the water H atoms, it seems very likely that the intermolecular $\mathrm{O} 2 \cdots \mathrm{O} 3^{\text {ii }}$
2.725 (4) A contact [symmetry code: (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$], in fact, corresponds to a hydrogen bond. These bonds link the molecules into infinite chains along the [101] direction.

Experimental

A mixture of 10 ml of 0.1 Mp -aminoacetophenone ethanol solution and 10 ml of $0.1 M$ PMBP ethanol solution was refluxed for 4 h over a steam bath. The excess solvent was removed by evaporation. The Schiff base ligand was collected as a cream-colored powder and dried in air. 10 ml of $0.1 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ethanol solution was added dropwise to 10 ml of a 0.2 M solution of the ligand in ethanol. After vigorous stirring for $6-8 \mathrm{~h}$ at $343-353 \mathrm{~K}$, a dark-brown product precipitated; this was filtered off, washed with cold anhydrous ethanol solution several times and dried in a vacuum desiccator over CaCl_{2}. The Cu complex was recrystallized from ethanol solution. Elemental analyses for L and $\mathrm{Cu} L_{2}$ respectively are as follows (calculated values in parentheses): C 76.60 (76.12) and 69.15 (69.00)\%, H 5.41 (5.11) and $5.12(4.86), \mathrm{N} 10.81(10.65)$ and $10.13(9.66) \%$. IR spectra in the region $4000-400 \mathrm{~cm}^{-1}$ were determined with a KBr pellet on an AVATAR 360 (USA) IR spectrophotometer. The $\mathrm{C}=\mathrm{O}$ absorption bands, observed at 1637 and $1505 \mathrm{~cm}^{-1}$ for PMBP, shifted to 1672 and $1662 \mathrm{~cm}^{-1}$ for the uncoordinated ligand, and to 1660 and $1630 \mathrm{~cm}^{-1}$ for the complex; the $\mathrm{C}=\mathrm{N}$ absorption bands, observed at 1572 and $1541 \mathrm{~cm}^{-1}$ in the ligand, red shifted to 1570 and $1533 \mathrm{~cm}^{-1}$ in the complex, indicating that the carbonyl O and imine N atoms of the ligand are coordinated to the Cu atom in the complex.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=870.35$
Monoclinic, $C 2 / c$
$a=22.652$ (6) A
$b=16.228$ (5) \AA
$c=15.250(5) \AA$
$\beta=130.636(14)^{\circ}$
$V=4254(2) \AA^{3}$
$Z=4$
$D_{x}=1.359 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 790 reflections
$\theta=2.3-20.9^{\circ}$
$\mu=0.57 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, dark brown
$0.28 \times 0.25 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-
2050 reflections with $I>2 \sigma(I)$
detector diffractometer
φ and ω scans
Absorption correction: none
8399 measured reflections
3765 independent reflections
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-26 \rightarrow 25$
$k=-17 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.096$
$S=0.97$
3765 reflections
362 parameters
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0266 P)^{2}\right]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: $0.00032(12)$

All aryl and methyl H atoms were located in a difference map and refined with isotropic displacement parameters $[\mathrm{C}-\mathrm{H}=0.83$ (4)1.02 (4) \AA]. The H atoms of the aqua ligand (O3) were not located.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Tianjin Scientific Committee (003601711).

References

Bovio, B., Cingolani, A., Marchetti, F. \& Pettinari, C. (1993). J. Organomet. Chem. 458, 39-48.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leovac, V. M., Jevtovic, V. S. \& Bogdanovic, G. A. (2002). Acta Cryst. C58, m514-m516.

Miyazaki, S., Mukai, H., Umetani, S., Kihara, S. \& Matsui, M. (1989). Inorg. Chem. 28, 3014-3017.
Morales, R., Nekimken, H., Bartholdi, C. S. \& Cunningham, P. T. (1988). Spectrochim. Acta, A44, 165-169.
Pettinari, C., Rafaiani, G., Lobbia, G. G., Lorenzotti, A., Bonati, F. \& Bovio, B. (1991). J. Organomet. Chem. 405, 75-92.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vigoto, P. A. (1987). Inorg. Chim. Acta, 139, 39-48.
Wang, J.-L., Yang, Y. \& Miao, F.-M. (2003). Chin. J. Inorg. Chem. In the press.
Wang, J.-L., Yu, M., Xu, X.-M. \& Miao, F.-M. (2002). Acta Cryst. E58, o385o387.
Wang, J.-L., Yu, M., Yang, Y. \& Miao, F.-M. (2002). Acta Physicochim. Sin. 18, 389-393.
Yu, M., Wang, J.-L. \& Miao, F.-M. (2002). Acta Cryst. E58, o1182-o1184.

